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To understand how dioxygen is activated at copper sites in
biological and industrial catalytic systems,1,2 the reactions of discrete
Cu(I) complexes with O2 have been studied extensively.3 By using
low-temperature isolation and/or stopped-flow kinetic techniques,
novel intermediates have been identified. Typically, an initial 1:1
Cu/O2 adduct either is presumed or is established by transient
spectroscopy,4 and it reacts rapidly with a second Cu(I) complex
to yield peroxo- and/or bis(µ-oxo)dicopper species that are suf-
ficiently stable to be characterized in detail. Efforts aimed at the
isolation and characterization of the 1:1 Cu/O2 adducts have been
hindered in large part by the generally low barriers and largeKeq

values for their reaction with a second Cu(I) ion.5 Only one such
adduct has been structurally defined by X-ray crystallography,
TptBu,iPrCu(η2-O2),6 and there are few reports of definitive identifica-
tion of 1:1 species using data such asν(O-O) from vibrational
spectroscopy.7,8

We recently discovered that variation of the steric properties of
coordinatedâ-diketiminate ligands (L) enables control over the
nature of the intermediate observed in low-temperature reactions
of LCu(I)(MeCN) (1) with O2.9,10 Thus, when L is relatively
unhindered, bis(µ-oxo) species (2) are observed, but when L is
sufficiently bulky, a 1:1 adduct (3) forms that features side-on (η2)
O2 coordination according to resonance Raman spectroscopic data.11

Herein we report confirmation of this topology via an X-ray crystal
structure determination of3b‚3THF and density functional calcula-
tions that suggest an unusual bonding description. In a first
demonstration of the notion that3 might be used as a synthetic
reagent for the stepwise construction of novel multicopper species,
we report that addition of various Cu(I) reagents to3ayields bis(µ-
oxo) complexes (4) that feature unique asymmetry due to the
presence of divergent N-donor ligands.

The X-ray structure of3b‚3THF (Figure 1) showsη2 coordination
of O2, but because of severe disorder problems, the O-O distance
of 1.44(2) Å is not reliable.12 Density functional (DFT) calcula-
tions13 predict a C2V minimum energy structure for3b that
corroborates the X-ray diffraction results (see caption to Figure 1).

Predicted Raman vibrational data are also in reasonable agreement
with experiment.11,14 The calculated O-O distance (1.376 Å) is
significantly longer than is characteristic for metal-superoxo
complexes (∼1.2-1.3 Å)15 and is more akin to the value associated
with metal-peroxo compounds (∼1.4-1.5 Å).16 In conjunction with
the low ν(O-O) values measured by Raman spectroscopy,11 this
finding suggests significant contribution of a Cu(III)-(O2

2-)
resonance form in the 1:1 adducts3 (previously denoted9 as
superoxo species). Analysis of the Kohn-Sham (KS) molecular
orbitals (MOs) indicates that the highest occupied MO (HOMO)
is essentially a pureπ*OO with the participating p orbitals being
perpendicular to the plane of the diketiminate (Figure 2, left). The
lowest unoccupied MO (LUMO, right) lies at very low energy
(suggesting that3b should have a high reduction potential) and is
dominated by the other (i.e., in-plane)π*OO orbital. This sameπ*OO

hybrid contributes significantly to the HOMO-2 orbital in a fashion
that is net bonding with copper. To the extent that the in-plane
π*OO hybrid contributes significantly to both occupied and un-
occupied orbitals and may be viewed as having a formal occupation
number between 1 and 2, this rationalizes a structure intermediate
between superoxide and peroxide. As final theoretical support for
significant Cu(III)-(O2

2-) character, we note that Cu(III) is formally
d8, and natural bond orbital analysis17 of the KS density for3b
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Figure 1. X-ray crystal structure of3b‚3THF, showing all non-hydrogen
atoms as 50% thermal ellipsoids. Selected distances (Å) and angles (deg):
Cu1-N1, 1.858(8); Cu1-O1, 1.852(8); O1-O1A, 1.44(2); N1-Cu1-N1A,
102.1(5); O1-Cu1-O1A, 45.8(5). The corresponding DFT predicted values
are 1.898, 1.908, 1.376, 102.6, and 42.3.

Figure 2. HOMO (left) and LUMO (right) of3b (0.026 and 0.035 bohr-3

contour levels, respectively, for clarity in depiction).
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indicates that there are indeed precisely four pairs of unshared d
electrons on copper.

Removal of free O2 from solutions of3 at -80 °C did not result
in degradation of its UV-vis spectral features, thus setting the stage
for its potential use as a building block in reactions with Cu(I)
complexes that would otherwise bind O2 if it were present. We
injected solutions of the Cu(I) reagents [L′Cu(MeCN)]n+ (L′ )
H(Me2LMe2)-, n ) 0; L′ ) TMPDA, n ) 1; L′ ) Me3TACN, n )
1)18 into degassed green solutions of3aat -80 °C.19 The solutions
remained EPR silent, but rapidly became yellow-brown, with growth
of an intense UV-vis absorption atλmax ≈ 400-430 nm (Table
S1). Titration data for the reaction with [(TMPDA)Cu(MeCN)]-
O3SCF3 showed that maximum absorbance was reached when the
ratio of reactants was 1:1. Raman data were acquired on solutions
derived from3a that had been prepared with16O2 or 18O2 (λex )
413.1 or 457.9 nm,-196 °C). Resonance enhanced18O-isotope
sensitive features were observed in the 600-650 cm-1 region (∆18O
) 23-28 cm-1; Table S1). The spectral data are consistent with
formulation of the products as bis(µ-oxo) complexes,20 although
the Raman shifts for the monocationic species are anomalously high
(∼650 cm-1).21 Importantly, formation of the “asymmetric” species
4 is indicated by spectral features that are distinct from those
associated with the “symmetric” bis(µ-oxo) species that would result
from reaction of the added Cu(I) reagent with free O2.10,22,23

To prove this assignment, we obtained the X-ray crystal structure
of (4c)(O3SCF3) (Figure 3). The [Cu2(µ-O)2]2+ core parameters are
similar to others reported previously (cf., Cu-Cu) 2.8492(5) Å).3e

Despite differences in Cu-N distances (avg. 1.89 Å for the
â-diketiminate versus 1.99 for TMPDA), the Cu-O bond distances
are essentially equivalent (1.817-1.819 Å). A significant interaction
between the triflate counterion and Cu2 is indicated by the Cu2-
O3 distance of 2.614(2) Å. Similar triflate interactions to yield five-
coordinate centers in [(TMPDA)2Cu2(µ-O)2](O3SCF3)2 were iden-
tified previously by EXAFS (Cu-O ) 2.32 Å).22

In sum, a novel electronic structure for a structurally defined
1:1 Cu/O2 adduct that features significant Cu(III)-(O2

2-) character
is indicated by DFT calculations. Reaction of this adduct with Cu(I)
reagents leads to unique asymmetric bis(µ-oxo) complexes identified
by spectroscopy and X-ray diffraction. This demonstration of the
use of an isolable 1:1 Cu/O2 adduct as a synthon for building
multicopper species in stepwise fashion provides important prece-
dent for future applications of the methodology to other systems,
including those containing alternative metal ions.
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Figure 3. X-ray crystal structure of (4c)(O3SCF3), showing all non-
hydrogen atoms as 50% thermal ellipsoids.

C O M M U N I C A T I O N S

J. AM. CHEM. SOC. 9 VOL. 124, NO. 36, 2002 10661


